OptimalAI
PUBLICATIONS
Sparse PLS hyper-parameters optimisation for investigating brain-behaviour relationships
Authors
Fabio S Ferreira
Maria J Rosa
Michael Moutoussis
John Shawe-Taylor
John Shawe-Taylor
Publication date
2018
Publisher
IEEE
Total citations
Description
Unsupervised learning approaches, such as Partial Least Squares, can be used to investigate relationships between multiple sources of data, such as neuroimaging and behavioural data. In cases of high-dimensional datasets with limited number of examples (e.g. neuroimaging data) there is a need for regularisation to enable the solution of the ill-posed problem and prevent overfitting. Different approaches have been proposed to optimise the regularisation parameters in unsupervised models, however, so far, there has been no comparison between the different approaches using the same data. In this work, two optimisation frameworks (i.e. a permutation and a train/test framework) were compared using sparse PLS to investigate associations between brain connectivity and behaviour data. Both frameworks were able to identify at least one brain-behaviour associative effect. A second brain-behaviour effect was …