OptimalAI
Authors
Makoto Yamada
Koh Takeuchi
Tomoharu Iwata
Samuel Kaski
Samuel Kaski
Publication date
Publisher
Total citations
Cited by
Description
Supplementary Materials Localized Lasso for High-Dimensional Regression Page 1
Supplementary Materials Localized Lasso for High-Dimensional Regression Makoto
Yamada1,2, Koh Takeuchi3, Tomoharu Iwata3, John Shawe-Taylor4, Samuel Kaski5
1RIKEN AIP, Japan 2JST, PRESTO 3NTT Communication Science Laboratories, Japan
4University College London, UK 5Aalto University, Finland makoto.yamada@riken.jp, {takeuchi.koh,iwata.tomoharu}@lab.ntt.co.jp
j.shawe-taylor@ucl.ac.uk, samuel.kaski@aalto.fi Propositions used for deriving Eq. (4) in
main paper Proposition 1 Under rij ≥ 0, rij = rji, rii = 0, we have ∂ ∂vec(W) n ∑ i,j=1 rij wi −
wj 2 = 2Fgvec(W), where Fg = Id ⊗ C, [C]i,j = { ∑n j =1 rij vi−vj 2 − rij vi−vj 2 (i = j) −rij vi−vj 2 (i
= j) . Proof: Under rij ≥ 0, rij = rji, rii = 0, the derivative of the network regularization term with
respect to wk is given as ∂ ∂wk n ∑ i,j=1 rij wi − wj 2 = n ∑ i=1 rik wk − wi wk − wi …